

1ppm DAC 20-Bit, ±1LSB INL,Voltage Output DAC

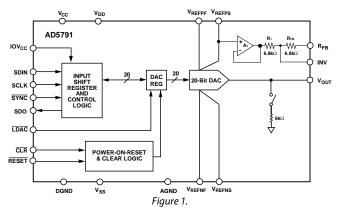
Preliminary Technical Data

AD5791

FEATURES

1-ppm Resolution 1-ppm INL 9nV/√Hz Noise Spectral Density 1-ppm Output Drift 0.05-ppm/°C Temperature Drift 1µs Settling Time Glitch Energy 0.4nV-s (5V), 1nV-s (10V) Operating temperature range: -40°C to 125°C 20-Lead TSSOP and 4x5mm LFCSP Packages Wide Power Supply Range up to ±16.5V 50 MHz Schmitt Triggered Digital Interface

APPLICATIONS


Medical Instrumentation Test and Measurement Industrial Control High end Scientific and Aerospace Instrumentation

GENERAL DESCRIPTION

The AD5791 is a single 20-bit, unbuffered voltage-output DAC that operates from a bipolar supply of up to 33V. The AD5791 accepts a positive reference input in the range 4V to V_{DD} – 2.5V and a negative reference input in the range V_{SS} + 2.5 V to 0V. The AD5791 offers a relative accuracy specification of ±1 LSB max, and operation is guaranteed monotonic with a ±1 LSB DNL max specification.

The part uses a versatile 3-wire serial interface that operates at clock rates up to 50 MHz and that is compatible with standard SPI[®], QSPI[™], MICROWIRE[™], and DSP interface standards. The

FUNCTIONAL BLOCK DIAGRAM

Table 1. Complementary Devices

Part No.	Description
AD8675	Ultra Precision, 36 V, 2.8 nV/√Hz Rail-to-Rail Output Op Amp
AD8676	Ultra Precision, 36 V, 2.8 nV/√Hz Dual Rail-to- Rail Output Op Amp
ADA4004	1.8nV/√Hz, 36 V Precision Amplifier
ADA4898-1	High Voltage, Low Noise, Low Distortion, Unity Gain Stable, High Speed Op Amp

part incorporates a power-on reset circuit that ensures the DAC output powers up to 0V and in a known output impedance state and remains in this state until a valid write to the device takes place. The part provides a disable feature that places the output in a defined load state

PRODUCT HIGHLIGHTS

Wide Power supply range up to ±16.5V

High Speed interface with clock speeds up to 50 MHz

Operating temperature Range: -40°C to 125°C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History
Specifications
Timing Characteristics
Absolute Maximum Ratings
ESD Caution
Pin Configuration and Function Descriptions9
Typical Performance Characteristics
Theory of Operation11
DAC Architecture11

Preliminary Technical Data

Serial Interface 11
Load DAC (LDAC)
On-chip registers
Features 15
Power-On to 0V15
Reset Function
Asynchronous clear15
DAC Output State 15
Applications16
Typical operating circuit
Evaluation board16
Outline Dimensions17
Ordering Guide17

REVISION HISTORY

PrG – Preliminary Version, March 3, 2010

SPECIFICATIONS

 V_{DD} = 12.5 V to 16.5 V, V_{SS} = -16.5V to -12.5, V_{REFP} = 10 V, V_{REFN} = -10 V, V_{CC} = 2.7V to 5.5V, R_L = unloaded, C_L = unloaded; T_{MIN} to T_{MAX} , unless otherwise noted.

Table 2.

		A,B Versi			
Parameter	Min	Тур	Мах	Unit	Test Conditions/Comments
STATIC PERFORMANCE					
Resolution	20			Bits	
Relative Accuracy (INL Error) ²	-1	±0.5	1	LSB	B Version
	-4	±2	4	LSB	A Version
Total Unadjusted Error (TUE) ²	-4	±2	4	LSB	B Version
	-3	±1.5	3	LSB	$T_A = 25^{\circ}C$, B Version
	-7	±4	7	LSB	A Version
	-5	±2	5	LSB	T _A = 25°C, A Version
Differential Nonlinearity (DNL) ²	-1		1	LSB	Guaranteed monotonic
Full-Scale Error	-3		3	LSB	
	-2	±1	2	LSB	$T_A = 25^{\circ}C$
Full-Scale Error Temperature Coefficient	-0.5	±0.05	0.5	ppm FSR/°C	
Zero-Scale Error	-2		2	LSB	
	-1	±0.5	1	LSB	$T_A = 25^{\circ}C$
Zero-Scale Error Temperature Coefficient	-0.5	±0.05	0.5	ppm FSR/°C	
Gain Error	-3		3	ppm FSR	
	-2	±1	2	ppm FSR	$T_A = 25^{\circ}C$
Gain Error Temperature Coefficient	-0.5	±0.05	0.5	ppm FSR/°C	
Mid-Scale Error	-3		3	LSB	
	-2	±1	2	LSB	$T_A = 25^{\circ}C$
Mid-Scale Error Temperature Coefficient	-0.5	±0.05	0.5	ppm FSR/°C	
R1, R _{FB} Matching		0.6		%	
OUTPUT CHARACTERISTICS ³					
Output Voltage Range	VREFN		V_{REFP}	v	
Output temperature Coefficient	-0.5	±0.05	0.5	ppm/°C	Measured at +7.5V output
Output Drift vs. Time	0.5	0.1	TBD	ppm, c	After 1000 hours lifetest at $T_A = 125^{\circ}C$
output blitt vs. Time		1	TBD	ppm	After 50 hours, $T_A = 25^{\circ}C$
Output Slew Rate		50	100	V/µs	
Output Voltage Settling Time		0.5	1	μs	¹ ⁄ ₄ scale to ³ ⁄ ₄ scale code transition
Output Voltage Secting Time		9	1	nV/√Hz	@ 1 kHz, DAC code = midscale
Supurnoise spectral Delisity		9		nV/√Hz	@ 10 kHz, DAC code = midscale
		9		nV/√Hz	@ 100 kHz, DAC code = midscale @ 100 kHz, DAC code = midscale
Output Voltage Noise		9 0.6		иν/γнz μV p-p	DAC code = midscale, 0.1 Hz to 10 Hz
		0.0		μνργ	bandwidth
Digital-to-Analog Glitch Energy		0.4			1 LSB change around major carry
		0.4		nV-s	5V output span
		1		nV-s	10V output span
		5		nV-s	20V output span
Digital-to-Analog Glitch Amplitude		TBD		mV pk-pk	
Power-on Glitch Energy		TBD		nV-s	Application of power supplies
Power-on Glitch Amplitude		TBD		mV pk-pk	Application of power supplies
Output Enable Glitch Energy		TBD		nV-s	Output enabled
Output Enable Glitch Amplitude		TBD		mV pk-pk	Output enabled
Digital Feedthrough		0.02		nV-s	
DC Output Impedance (Normal Mode)		3.4		kΩ	

AD5791

		A, B Versi	ion ¹				
Parameter	Min	Тур	Max	Unit	Test Conditions/Comments		
DC Output Impedance (Output Disabled)		6		kΩ			
Signal-to-Noise Ratio		TBD		dB			
Spurious Free Dynamic Range		TBD		dB			
Total Harmonic Distortion		TBD		dB			
REFERENCE INPUTS							
V _{REFP} Input Range	4		V _{DD} -	V			
			2.5V				
V _{REFN} Input Range	V _{ss} + 2.5V		0				
Input Current		TBD	TBD	mA	V _{REFP} , V _{REFN} , Code Dependent		
DC Input Impedance	TBD	TBD	TBD	kΩ	VREFP, VREFN, Code Dependent		
Input Capacitance		TBD		pF	V _{REFP} , V _{REFN}		
V _{REFP} Reset Threshold		TBD		V			
LOGIC INPUTS							
Input Current ⁴		±1	±2	μΑ			
Input Low Voltage, V _{IL}			0.3 * IOV _{cc}	V	$IOV_{CC} = 1.8 V \text{ to } 5.5 V$		
Input High Voltage, V⊪	0.7 * IOVcc			V	$IOV_{CC} = 1.8 V \text{ to } 5.5 V$		
Pin Capacitance		4		pF			
LOGIC OUTPUT (SDO)							
Vol, Output Low Voltage			0.4	V	$IOV_{CC} = 1.8V$ to 5.5V, sinking 1mA		
V _{OH} , Output High Voltage	IOV _{CC} – 0.5V				$IOV_{cc} = 1.8V$ to 5.5V, sourcing 1mA		
High Impedance Leakage Current			±1	μA			
High Impedance Output Capacitance		5		рF			
POWER REQUIREMENTS					All digital inputs at DGND or IOV_{CC}		
V _{DD}	7.5		V _{ss} + 33	V			
Vss	V _{DD} – 33		-2.5	V			
Vcc	2.7		5.5	V			
IOVcc	1.8		5.5	V			
ldd		4.2	TBD	mA			
lss		4.1	TBD	mA			
lcc		800	TBD	μA			
DC Power Supply Rejection Ratio (PSRR)		TBD		dB	$\Delta V_{DD} \pm 10\%$, $V_{SS} = 15V$		
		TBD		dB	$\Delta V_{SS} \pm 10\%$, $V_{DD} = 15 V$		
AC Power Supply Rejection Ratio		TBD		dB	$\Delta V_{DD} = 200 \text{mV}$, 50 Hz/60 Hz, V _{SS} = 15V		
		TBD		dB	$\Delta V_{SS} = 200 \text{mV}$, 50 Hz/60 Hz, $V_{DD} = 15 \text{ V}$		
Power-Up Time		TBD		μs			

¹ Temperature range : -40°C to +125°C, typical at +25°C.
 ² Performance characterised with AD8676 as reference buffer.
 ³ Guaranteed by design and characterization, not production tested.
 ⁴ Total current flowing into all pins.

TIMING CHARACTERISTICS

 V_{CC} = 2.7 V to 5.5 V, IOV_{\text{CC}} = 1.8V to 5.5V; all specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 3.

Parameter	Limit ¹	Unit	Test Conditions/Comments
t ₁ ²	20	ns min	SCLK cycle time
	50	ns min	SCLK cycle time (Readback and daisychain modes)
t ₂	8	ns min	SCLK high time
t ₃	8	ns min	SCLK low time
t4	10	ns min	SYNC to SCLK falling edge setup time
t ₅	5	ns min	SCLK falling edge to SYNC rising edge hold time
t ₆	10	ns min	Minimum SYNC high time
t ₇	5	ns min	SYNC rising edge to next SCLK falling edge ignore
t ₈	5	ns min	Data setup time
t9	5	ns min	Data hold time
t 10	10	ns min	LDAC falling edge to SYNC falling edge
t11	TBD	ns min	SYNC rising edge to LDAC falling edge
t ₁₂	20	ns min	LDAC pulse width low
t ₁₃	TBD	ns max	LDAC falling edge to output response time
t ₁₄	1	µs max	Output settling time
t15	TBD	ns max	SYNC rising edge to output response time (LDAC tied low)
t ₁₆	20	ns min	CLR pulse width low
t ₁₇	TBD	ns max	CLR pulse activation time
t ₁₈	5	ns min	SYNC falling edge to first SCLK rising edge
t ₁₉	10	ns max	SYNC rising edge to SDO tristate
	30	ns max	$\overline{\text{SYNC}}$ rising edge to SDO tristate (C _L = 50pF)
t ₂₀	10	ns max	SCLK rising edge to SDO valid
	30	ns max	SCLK rising edge to SDO valid ($C_L = 50 pF$)
t ₂₁	5	ns min	SYNC rising edge to SCLK rising edge ignore
t ₂₂	20	ns min	RESET pulse width low
t ₂₃	TBD	ns min	RESET pulse activation time

¹ All input signals are specified with $t_R = t_F = 1 \text{ ns/V}$ (10% to 90% of IOV_{cc}) and timed from a voltage level of ($V_{IL} + V_{IH}$)/2. ² Maximum SCLK frequency is 50 MHz for write mode and 20MHz for readback and daisychain modes.

AD5791

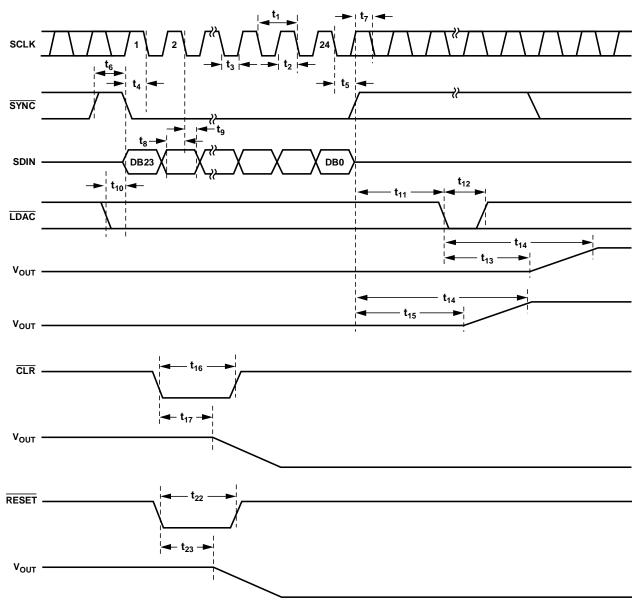
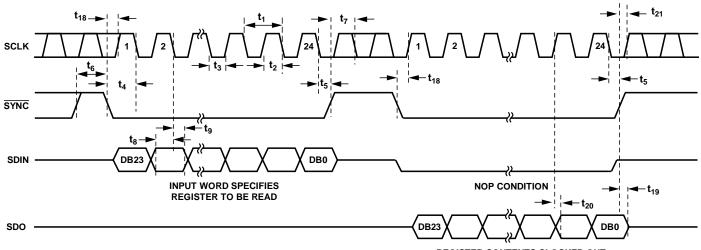



Figure 2. Write Mode Timing Diagram

Preliminary Technical Data

AD5791

REGISTER CONTENTS CLOCKED OUT

Figure 3. Readback Mode Timing Diagram

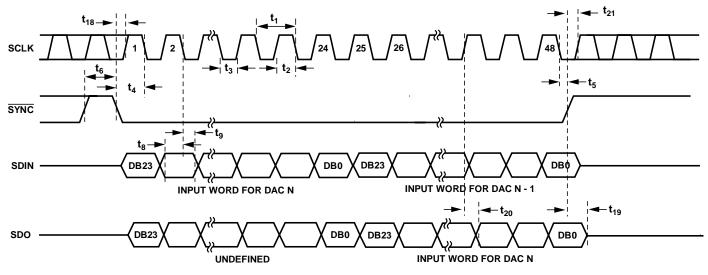


Figure 4. Daisychain Mode Timing Diagram

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.

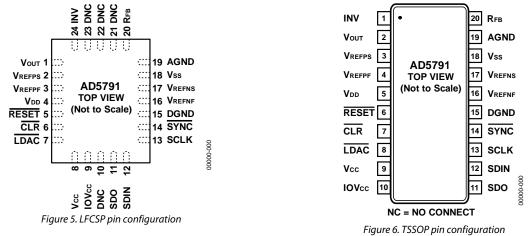
Transient currents of up to 100mA do not cause SCR latch-up

Table 4.

Table 4.	
Parameter	Rating
V _{DD} to AGND	–0.3 V to +34 V
Vss to AGND	-34V to +0.3V
V _{DD} to V _{SS}	-0.3V to +34V
Vcc to DGND	-0.3V to +7V
IOV _{cc} to DGND	-0.3V to +7V
Digital Inputs to DGND (including	-0.3 V to DV _{cc} + 0.3 V
IOV _{cc})	or +7V (whichever is
	less)
Vout to AGND	-0.3 V to V _{DD} + 0.3 V
VREFP to AGND	-0.3 V to V _{DD} + 0.3 V
V _{REFN} to AGND	$V_{SS} - 0.3V$ to $+ 0.3$ V
DGND to AGND	-0.3V to +0.3V
Operating Temperature Range, T_A	
Industrial	-40°C to + 125°C ¹
Storage Temperature Range	–65°C to +150°C
Maximum Junction Temperature, T	150°C
max	
Power Dissipation	$(T_J max - T_A)/\theta_{JA}$
LFCSP Package	
θ_{JA} Thermal Impedance	TBD°C/W
θ_{JC} Thermal Impedance	TBD°C/W
TSSOP Package	
θ_{JA} Thermal Impedance	TBD°C/W
θ_{JC} Thermal Impedance	TBD°C/W
Lead Temperature	JEDEC Industry
	Standard
Soldering	J-STD-020
ESD (Human Body Model)	TBD kV

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device is a high performance integrated circuit with an ESD rating of <TBD kV, and it is ESD sensitive. Proper precautions should be taken for handling and assembly.


¹ Temperature range for this device is -40° C to $+105^{\circ}$ C.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

LFCSP	TSSOP					
Pin No.	Pin No.	Mnemonic	Description			
1	2	Vout	Analog output voltage.			
2	2	VOUT VREEPS	Positive reference sense voltage input. A voltage in the range of 4V to V_{DD} – 2.5V can be connected.			
2	3		Positive reference sense voltage input. A voltage in the range of 4V to $V_{DD} = 2.5V$ can be connected.			
	4	V _{REFPF} DNC				
10, 21, 22, 23		DINC	Do not connect to these pins			
4	5	V _{DD}	ositive analog supply connection. A voltage in the range of 7.5 V to 16.5 V. can be connected V_{DD} should e decoupled to AGND.			
5	6	RESET	Active Low Reset Pin. Asserting this pin will return the AD5791 to its power on status.			
6	7	CLR	tive Low input. Asserting this pin sets the DAC register to a user defined value (See Table 11) and dates the DAC output. The output value will depend on the DAC register coding that is being used, her binary or 2scomplement.			
7	8	LDAC	Active low Load DAC logic input, This is used to update the DAC register and consequently, the analog output. When tied permanently low, the output is updated on the rising edge of SYNC. If LDAC is held high during the write cycle, the input register is updated, but the output update is held off until the falling edge of LDAC. The LDAC pin should not be left unconnected.			
8	9	Vcc	Digital supply pin. Voltage ranges from 2.7V to 5.5V. DV_{cc} should be decoupled to DGND.			
9	10	IOVcc	Digital interface supply pin, Digital threshold levels are referenced to the voltage applied to this pin. Voltage ranges from 1.8V to 5.5V			
11	11	SDO	Serial data output.			
12	12	SDIN	Serial Data Input. This device has a 24-bit shift register. Data is clocked into the register on the falling edge of the serial clock input.			
13	13	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at rates of up to 50 MHz.			
14	14	SYNC	Level-Triggered Control Input (Active Low). This is the frame synchronization signal for the input data. When SYNC goes low, it enables the input shift register, and data is then transferred in on the falling edges of the following clocks. The DAC is updated on the rising edge of SYNC.			
15	15	DGND	Ground reference pin for digital circuitry.			
16	16	VREFNF	Negative reference force voltage input. A voltage in the range of V_{ss} + 2.5V to 0V can be connected			
17	17	V _{REFNS}	Negative reference sense voltage input. A voltage in the range of V_{ss} + 2.5V to 0V can be connected			
18	18	Vss	Negative analog supply connection. A voltage in the range of -16.5 V to -2.5 V can be connected. V_{ss} should be decoupled to AGND.			
19	19	AGND	Ground Reference Pin for Analog Circuitry.			
20	20	R _{FB}	Feedback connection for external amplifier. See Features section for further details			
24	1	INV	Inverting input connection for external amplifier. See Features section for further details			
EPAD		Vss	Negative analog supply connection. A voltage in the range of -16.5 V to -2.5 V can be connected.			
	I					

AD5791

TYPICAL PERFORMANCE CHARACTERISTICS

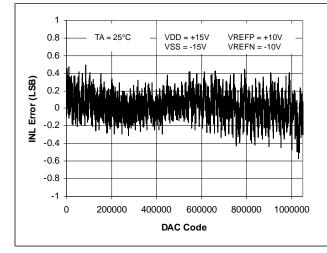


Figure 7. Integral Non Linearity Error vs. DAC Code

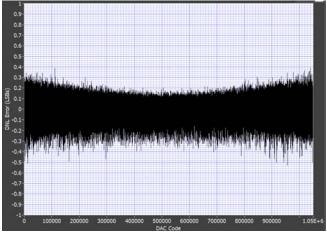


Figure 8. Differential Non Linearity Error vs. DAC Code

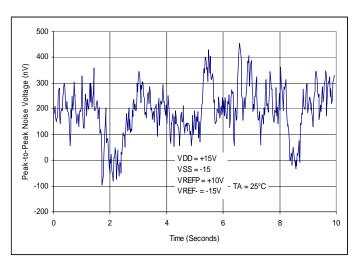


Figure 9. 0.1 Hz to 10Hz peak-to-peak Noise

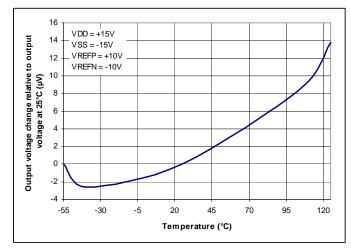


Figure 10. Output voltage Drift vs. Temperature

The AD5791 is a high accuracy, fast settling, single, 20-bit, serial input, voltage-output DAC. It operates from a V_{DD} supply voltage of 7.5 V to 16.5V and a V_{SS} supply of -16.5V to -2.5V. Data is written to the AD5791 in a 24-bit word format via a 3-wire serial interface. The AD5791 incorporates a power-on reset circuit that ensures the DAC output powers up to 0V with the V_{OUT} pin clamped to AGND through a ~6k Ω internal resistor.

DAC ARCHITECTURE

The architecture of the AD5791 consists of two matched DAC sections. A simplified circuit diagram is shown in Figure 11. The six MSBs of the 20-bit data-word are decoded to drive 63 switches, E0 to E62. Each of these switches connects one of 63 matched resistors to either the V_{REFP} or V_{REFN} voltage. The remaining 14 bits of the data-word drive Switches S0 to S13 of a 14-bit voltage mode R-2R ladder network. To ensure performance to specification, the reference inputs must be force sensed with external amplifiers.

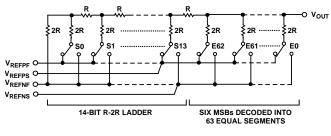


Figure 11. DAC Ladder Structure

Table 6. Input Shift Register Format

N	ISB

MOD				
DB23	DB22	DB21	DB20	DB19 DB0
R/W	Reg	ister Add	lress	Register Data

Table 7. Decoding the Input Shift Register

R/W	Register Address		ress	Description			
Х	0	0	0	No Operation (NOP), used in readback operations			
0	0	0	1	Write to DAC register			
0	0	1	0	Write to CONTROL register			
0	0	1	1	Write to CLEARCODE register			
0	1	0	0	Write to SOFTWARE CONTROL register			
1	0	0	1	Read from DAC register			
1	0	1	0	Read from CONTROL register			
1	0	1	1	Read from CLEARCODE register			

SERIAL INTERFACE

The AD5791 has a 3-wire serial interface $\overline{(SYNC)}$, SCLK, and SDIN) that is compatible with SPI, QSPI, and MICROWIRE interface standards, as well as most DSPs. (See Figure 2 for a timing diagram.)

Input Shift Register

The input shift register is 24 bits wide. Data is loaded into the device MSB first as a 24-bit word under the control of a serial clock input, SCLK, which can operate at up to 50MHz. The input register consists of a R/\overline{W} bit, three address bits and twenty register data bits as shown in Table 6. The timing diagram for this operation is shown in Figure 2.

I CR

Standalone Operation

The serial interface works with both a continuous and noncontinuous serial clock. A continuous SCLK source can only be used if SYNC is held low for the correct number of clock cycles. In gated clock mode, a burst clock containing the exact number of clock cycles must be used, and SYNC must be taken high after the final clock to latch the data. The first falling edge of SYNC starts the write cycle. Exactly 24 falling clock edges must be applied to SCLK before SYNC is brought high again. If SYNC is brought high before the 24th falling SCLK edge, the data written is invalid. If more than 24 falling SCLK edges are applied before SYNC is brought high, the input data is also invalid. The input register addressed is updated on the rising edge of SYNC. For another serial transfer to take place, SYNC must be brought low again. After the end of the serial data transfer, data is automatically transferred from the input shift register to the addressed register.

Once the write cycle is complete, the output can be updated by taking $\overline{\text{LDAC}}$ low while SYNC is high.

Daisy-Chain Operation

For systems that contain several devices, the SDO pin can be used to daisy chain several devices together. Daisy-chain mode can be useful in system diagnostics and in reducing the number of serial interface lines. The first falling edge of SYNC starts the write cycle. SCLK is continuously applied to the input shift register when SYNC is low. If more than 24 clock pulses are applied, the data ripples out of the shift register and appears on the SDO line. This data is clocked out on the rising edge of SCLK and is valid on the falling edge. By connecting the SDO of the first device to the SDIN input of the next device in the chain, a multidevice interface is constructed. Each device in the system requires 24 clock pulses. Therefore, the total number of clock cycles must equal $24 \times N$, where *N* is the total number of AD5791 devices in the chain. When the serial transfer to all devices is complete, SYNC is taken high. This latches the input data in each device in the daisy chain and prevents any further data from being clocked into the input shift register. The serial

clock can be a continuous or a gated clock.

A continuous SCLK source can only be used if <u>SYNC</u> is held low for the correct number of clock cycles. In gated clock mode, a burst clock containing the exact number of clock cycles must be used, and <u>SYNC</u> must be taken high after the final clock to latch the data.

Readback

The contents of all the on-chip registers can be readback via the SDO pin, Table 7 outlines how the registers are decoded. After a register has been addressed for a read the next 24 clock cycles will clock the data out on the SDO pin. For a read of a single register the No Operation function can be used to clock out the data, alternatively if more than one register is to be read, the data of the first register to be addressed can be clocked out at the same time the second register to be read is being addressed. The SDO pin must be enabled, to complete a readback operation, the SDO pin is enabled by default.

LOAD DAC (LDAC)

After data has been transferred into the input register of the DAC, there are two ways to update the DAC register and DAC output. Depending on the status of both SYNC and LDAC, one of two update modes is selected, synchronous DAC updating or asynchronous DAC updating

Synchronous DAC Update

In this mode, $\overline{\text{LDAC}}$ is held low while data is being clocked into the input shift register. The DAC output is updated on the rising edge of SYNC.

Asynchronous DAC Update

In this mode, $\overline{\text{LDAC}}$ is held high while data is being clocked into the input shift register. The DAC output is asynchronously updated by taking $\overline{\text{LDAC}}$ low after $\overline{\text{SYNC}}$ has been taken high. The update now occurs on the falling edge of $\overline{\text{LDAC}}$.

ON-CHIP REGISTERS

DAC Register

Table 8 outlines how data is written to and read from the DAC register

Table 8. DAC Register

MSB					LSB
DB23	DB22	DB21	DB20	DB19	DB0
	-				
R/W R/W	Regi	ister Add	ress	DAC Register Data	

The following equation describes the ideal transfer function of the DAC;

$$V_{OUT} = \frac{\left(V_{REFP} - V_{REFN}\right) \times D}{2^{20}} + V_{REFN}$$

Where;

 V_{REFN} is the negative voltage applied at the V_{REFN} input pin. V_{REFP} is the positive voltage applied at the V_{REFP} input pin. *D* is the 20-Bit Code programmed to the DAC

Control Register

The control register controls the mode of operation of the AD5791.

Table 9. Control Register

MSB															LSB
DB23	DB22	DB21	DB20	DB19DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
R/W	Regi	ister Add	ress		Control Register Data										
R/W	0	1	0	Reserved	Reserved		LIN C	COMP		SDODIS	BIN/2sC	DACTRI	OPGND	RBUF	Reserved

Table 10. Control Register Functions

Function	Description							
Reserved	These bits are reserved and should be programmed to zero.							
RBUF	Output amplifier configuration control							
	0 Internal amplifier, A1, is powered up and resistors R _{FB} and R ₁ are connected in series as shown in Figure 1. This allows an external amplifier to be connected in a gain of 2 configuration. See features section for further details.							
	 (Default) Internal amplifier, A1, is powered down and resistors R_{FB} and R₁ are connected in parallel so that the resistance between the R_{FB} and INV pins is 3.4kΩ, equal to the resistance of the DAC. This allows the R_{FB} and INV pins to be used for input bias current compensation for an external unity gain amplifier. 							
OPGND	Output ground clamp control.							
	0 DAC output clamp to ground is removed and the DAC is placed in normal mode.							
	1 (Default) DAC output is clamped to ground through a ~6k Ω resistance, and the DAC is placed in tri-state mode.							
DACTRI	DAC tri-state control.							
	0 DAC is in normal operating mode							
	1 (Default) DAC is in tri-state mode							
BIN/2sC	DAC register coding select.							
	0 (Default) DAC register uses 2sComplement coding							
	1 DAC register uses offset binary coding							
SDODIS	SDO pin enable/disable control							
	0 (Default) SDO pin is enabled							
	1 SDO pin is disabled (tri-state)							
LIN COMP	Linearity compensation for varying reference input spans. See Features section for further details							
	0 0 0 0 (Default) Reference input span up to 10V.							
	1 1 0 0 Reference input span greater than 10V							

Clearcode Register

The Clearcode register sets the value to which the DAC output will be set when the CLR pin or CLR bit is asserted. The output value will depend on the DAC coding that is being used, either binary or 2scomplement. Default register value is zero.

Table 11. Clearcode Register

MSB					LSB
DB23	DB22	DB21	DB20	DB19	DB0
	R/W Register Address			Clearcode Register Data	
R∕₩	0	1	1	20-bits of Data	

Software Control Register

This is a write only register in which writing a '1' to a particular bit has the same effect as pulsing the corresponding pin low.

Table 12. Software Control Register B

Ν	Λ	S	

MSB			-					LSB
DB23	DB22	DB21	DB20	DB19	DB3	DB2	DB1	DB0
R/W	Regi	ster Add	lress	Software Control Register Data				
0	1	0	0	Reserved		RESET	CLR	LDAC

Table 13. Software Control Register Functions

Function	Description
LDAC	Setting this bit to a '1' updates the DAC register and consequently the DAC output
CLR	Setting this bit to a '1' sets the DAC register to a user defined value (See Table 11) and updates the DAC output. The output value will depend on the DAC register coding that is being used, either binary or 2scomplement.
RESET	Setting this bit to a '1' returns the AD5791 to its power-on state.

FEATURES

The AD5791 contains a power-on reset circuit that as well as resetting all registers to zero value, controls the output voltage during power-up. Upon power-on the DAC is placed in tri-state (it's reference inputs are disconnected) and its output is clamped to ground through a ~ $6k\Omega$ resistor, the DAC remains in this state until a valid write sequence is made to the DAC. This is a useful feature in applications where it is important to know the state of the DAC output while it is in the process of powering up.

CONFIGURING THE AD5791

After power-on the AD5791 must be configured to put it into normal operating mode before programming the output. To do this the control register must be programmed. The output clamp is removed by clearing the OPGND bit and the DAC is removed from tri-state by clearing the DACTRI bit. At this point the output will go to V_{REFN} , unless an alternative value is first programmed to the DAC register.

RESET FUNCTION

The AD5791 can be reset to its power-on state by two means; either by asserting the $\overline{\text{RESET}}$ pin or by utilising the software RESET control function (SeeTable 12). If the $\overline{\text{RESET}}$ pin is not used, it should be hardwired to IOV_{DD}.

ASYNCHRONOUS CLEAR

The CLR pin is an active low clear that allows the output to be cleared to a user defined value. The 18-bit clear code value is programmed to the Clearcode register. It is necessary to maintain $\overline{\text{CLR}}$ low for a minimum amount of time to complete the operation (see Figure 2). When the $\overline{\text{CLR}}$ signal is returned high the output remains at the clear value until a new value is programmed to the DAC register. The output cannot be updated with a new value while the $\overline{\text{CLR}}$ pin is low. A clear operation may also be performed by setting the CLR bit in the software control register (See Table 12).

DAC OUTPUT STATE

The DAC output can be placed in one of three states,

- 1. Normal operation
- 2. Clamped to ground through $6k\Omega$
- 3. Tri-state

The OPGND and DACTRI bits of the control register select the output state.

LINEARITY COMPENSATION

The AD5791 is factory calibrated with a reference input span of 20V ($V_{REFN} = -10V$ and $V_{REFP} = +10V$). Applying a smaller

reference span to the AD5791 will impact the integral non linearity performance in a minor way (1 to 2 LSBs). To compensate, a value can be programmed to the LIN COMP bits of the control register. For reference input spans of less than 10V, program 0000 to the these bits, for reference input spans of greater than 10V, 1100 should be programmed to these bits. The default value of the LIN COMP bits is 0000.

OUTPUT AMPLIFIER CONFIGURATION

There are a number of different ways that an output amplifier can be connected to the AD5791, depending on the voltage references applied and the desired output voltage span.

Unity Gain Configuration

Figure 12 shows an output amplifier configured for unity gain, in this configuration the output spans from V_{REFN} to $V_{\text{REFP.}}$

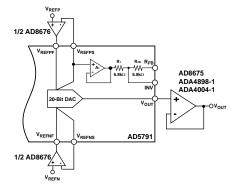


Figure 12. Output Amplifier in Unity Gain Configuration

Gain of Two Configuration

Figure 13 shows an output amplifier configured for a gain of two, the gain is set by the internal matched $6.8k\Omega$ resistors. In this configuration the output spans from 2^*V_{REFP} - V_{REFP} to 2^*V_{REFP} - V_{REFP} . This configuration is used to generate a bipolar output span from a single ended reference input, i.e. with V_{REFN} = 0V. For this mode of operation the RBUF bit of the control register must be cleared to logic 0.

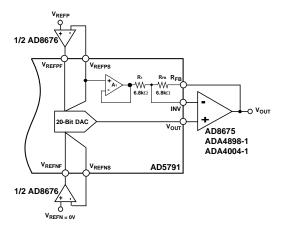


Figure 13. Output amplifier in Gain of Two Configuration

APPLICATIONS Typical operating circuit

Figure 14 shows a typical operating circuit for the AD5791 using an AD8676 for reference buffers and an AD8675 as an output buffer. To meet the specified linearity, force sense buffers must be used on the reference inputs. Because the output impedance of the AD5791 is $3.4k\Omega$, an output buffer is required for load driving.

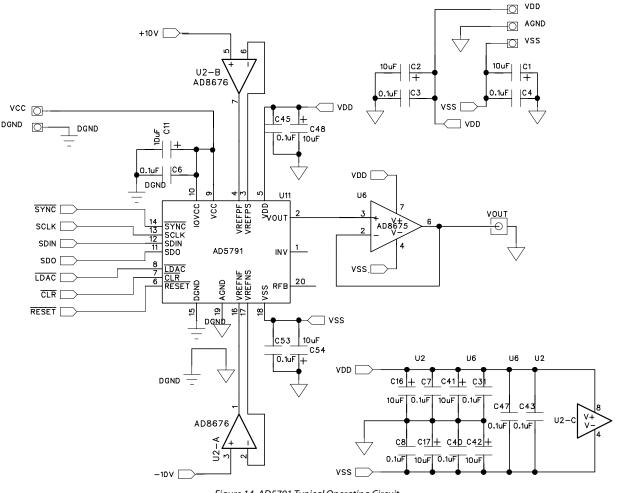
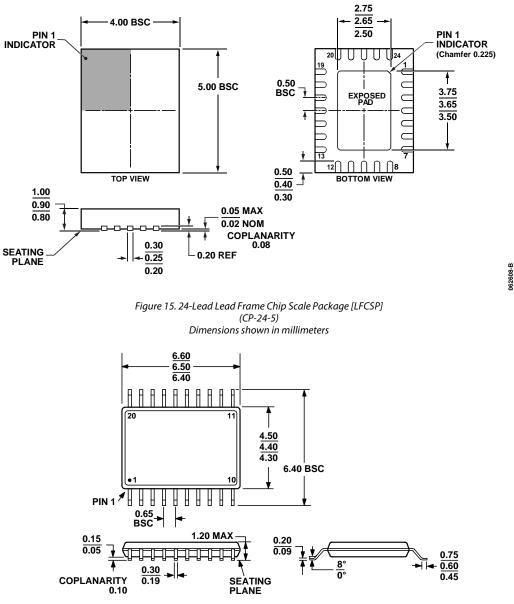
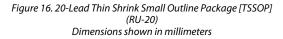



Figure 14. AD5791 Typical Operating Circuit


EVALUATION BOARD

An evaluation board is available for the AD5791 to aid designers in evaluating the high performance of the part with minimum effort. The AD5791 evaluation kit includes a populated and tested AD5791 PCB. The evaluation board interfaces to the USB port of a PC. Software is available with the evaluation board to allow the user to easily program the AD5791. The software runs on any PC that has Microsoft windows XP (SP2) or Vista (32 Bit) installed. The EVAL-AD5791 datasheet is available, which gives full details on the operation of the evaluation board.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AC

ORDERING GUIDE

Model	Temperature Range	INL	Package Description	Package Option
AD5791BCPZ	-40°C to +125°C	±1LSB	24-Lead LFCSP	CP-24-5
AD5791ACPZ	-40°C to +125°C	±4LSB	24-Lead LFCSP	CP-24-5
AD5791BRUZ	-40°C to +125°C	±1LSB	20-Lead TSSOP	RU-20
AD5791ARUZ	-40°C to +125°C	±4LSB	20-Lead TSSOP	RU-20

NOTES

Rev. PrG | Page 18 of 18

www.analog.com

©2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR08964-0-3/10(PrG)